
CS - 84
AF - 15

E"!

A COMPUTER SYSTEM

FOR

TRANSFORMAT IONAL GRAMMW- R

by

JOYCE FRIEDMAN

.,-4

This research was supported in part by the United Stat Air Force

Electronic Systems Division, under Contract F19628A--O035.I
Reproduced by, ihe

C LEA RING HOUE S
for Federal Scientific & Tochnical
Informahon Springfield Va 22151

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL LINGUISTICS PROJECT

JANUARY 1968
| .. .•* ,:'r•T r-"-'•

Thus doc~ument h=z bcwn crpproved 2
fo r p u b b e r olc er n ca l a ic-o ; iDA .

L- !:3

ii
I

V

4

-�------------- -. - ..- �.----- -

I

AF- 2

CS -84 January 1968

A Computer 6rstem for Transfc-rnaticrial Grammar

by
Joyce Friedman

U

Iq
Abstract

A comprehensive system for transformational grammar haz been desigr;.d

and is being implemented on the IBM 360/67 computer. The system deals

with the transformational model of syntax, along the lines of Chomsky's

Aspects of the Theory of Syntax. The major innovations include a f'll Al

and formal description of the syntax of a transformational grammar,

a directed random phrase structure generdtor, a lexical insertion

algorithm, and a simple problem-oriented program..ing language in which

the algorithm for application of transfor'iations can be expressed. In

his paper we present the syst as a wbole, first discussing the

philosophy underlying the development of the system, then outiiniinig

he system and discussing its more important special features.

References are given to papers which consider particular aspects of

the system in detail.

i !!

Page

introclucticn . I

A metalangaage for translformationa& grammar

fBasic c-ncepts ..

Tree 7

Analys s

Restriction .. i

Analysis aigorithm

Complex symbol i

Complex symbol operations

Components 6

Phrase structure 16

Lexicon .7... ...7

Transformations8

Component algorithms19

I Phrase structure generation 19

laexical insertion 20

Control of transformations 22

The Program 24

Directions for fature work 25

Cther transformational grammar s ystems 27

Acknowledgment 28

References

I

It

INTROiDUCTION

The computer system for transformationaL grammar presented in this

paper is the outcome of an attempt to write computer programs as aids

to research in transformational grammar, in particular, as aids to

writing grammars.

In the course of this work it soon became apparent that an

essential prior task was the formalization of a general and inclusive

notion of transformational grammar. The basic model is that of Chomsky's

Aspects of the Theory of S . (3]; we have extended this model to fill

in the many missing details and have formalized it to make it precise.

The system is implemented by a FORTRAN program on the IBM 360/67

computer. However, as a formal statement of transformational grammar,

it can be considered independently of the program. We have therefore

relegated to one section and to occasional fcotnotes all matters related

directly to the program.

This paper may be considered as both a summary of and an introduction

to the system. We have stressed the ways in which the system is new,

and have left, the details for other papers, whicth will be cited.

In developing the system our primary examples have been the MITRE

grammar (18p, the IBM Core Grammar (13] and the UCLA work on syntax (174]/

However, we have not limited the system to mattera treated in these

examples, but have tried to be comprehensive.

!/The UCIA work has kindly been made available to us in its preliminary
stages through unpublished working papers and memoranda. We wish also
to thank Barbara Hall Partee of UCLA for numerous discussions which
have helped to clarify our ideas about transformational grammar.

1

A transformational grammar may be sKetchily describea as foliuws.

The components of a transformational grammar are phrase structure

rules, a lexicon, and a set of transformations. The process of generating

a sentence consists first of the generation of a base tree using the

phrase structure rules. Lexical items are then attached appropriate±y

by a lexical insertion algorithm. Finally, the base tree with Its lexical

items is mapped by application of the transformat;ons iua some order into

a surface tree. The terminal string of the surface tree represents the

sentence.

From the outset we have felt that It was essential to consider a

transformational grammar as a whule. A rule of a grammar may behave

as intended in isolation, but in the grammar its interaction with other

rules is crucial. It is precisely these interrelations which are most

difficult to control, and we believe it is here that a computer system

can be most helpful.

We did not wish to try to guess the exact amount of power

required to describe the syntax of natural language, nor to be normative

in our approach. Our aim is to handle as uniformly and simply as we

can the sorts of things which do appear in the current work on

transformational grammar. The formalism has been made general enough

so that most of the formal grammars and rules which we have seen can be

expressed naturally. On the other hand, there are some aevices in the

literature which appear to us to be so different in character from the

rest of the material as to be unaccep4,able irn anything like their present

form, and we have not included them..-/

2-/As an example we might cite the distance measure inciuded in the Identity
Erasure Transformation of [131. This appcars to us to be more properly
considered as a linguistic rule, which shno2.d be expressible, but which
should not appear as part of a partic'ular tLransformation. Furtlher
comments on linguistic rules of this type appear bellow.

2

til:40 genrait ofl tad~±l rc~ne 1ll'*t.-ý will fe-:l tl'al,
the generality of the system is eAcessive. But, there is no need for any

one user to employ its full powur. Tn the metaianguage of this system,

a linguist may easi ly ueflnee ,.fon ,ubet of the syritaax; we belIeve

such formalization will make it easier for him to adhere to his conventions.

Although we have not done so, it would be pc'ss~ble to provide user-

orieattd bubroutines to vcrifv that the user's additional cunstrairits

are not violated.

The traditional description of a transformational grammar can be

given an alternative presentation in terms of basic concepts, components,

and component algorithms. The basic concepts of a grammar are trees,

analyses, restrictions, and complex symbols, with their corresponding

, ~algorithms. The components are phrase structure, lexicon, and

tranformains. The component algorithms are phrase structure genera-

tion, lexical insertion and control of transformations. Viewing a

grammar in this way, we are able to see more clearly the basi' problems I
to be treated. It is this breakdown which will bp u.-ed in the subsequent

description.

We assume that the reader is familiar with transformational grammar.

The presentation is incomplete; we omit standard items and emphasize the

ways in which this system differs from ct]1'!-r. 1..1.le t:- 'IlscSitn

below is largely informal, i•t is important that it is based on the

completely formal syntax of (21].I

I5

A lrAIAý'GU AGIL FOR T~RAN4IUW4J.A'j I' N'Al JW.A

To de~cribL' tht syntax ul a Irarisi~tirmv ,Aa gror...Imir c~n- r,*IZ~t

replac'ing angular bra7ýketz by un-JerlinItW, e.g. "trarnsformatiuo"

ratheir than "<trans~formation>~", ana u.3ing, "or' in pi-je)I

For linguists unfamillar with BNT it. 4h,_,iad :,fice toŽ oay h1el.

(1) the modified-BrIF prod1'icti':,n IA -- B C or 1 o r E,

expresses the context-free rewvriting r-ile " A D

(2) the nonterminal symbols o1f modifleai-BIW sz't dernoteat by the

* underlined name of the construci., viz. '~un~tformational gramrnar

phrase structure iexicon trarts'crma4It~nr '5) symbol~s riot

-- 4ilderlined are used autcitymously, and {4) juxt.apc&-_tI~on in the

object languiage is indicated~c by inap' 't'~, i hr- meta-,aglargf~..

We refer to the c'onstructs of the mw'alanguag', oL; "format~c",

becau~se they are in fact the fret-fi-~L.J f'rmatio ci rtht. ,omp,.J~.er syste~m.

We have carried the unrierlining of' fornm.t. riamvs i' thv teI tA, The

jj paper,

Baaia. to the synt~ax are tb- f.w., wo~ ~rt and .t-.v A

V1 ~word is a conitiguou~s string of' i:i~ .d dIigitc be~ginning with a

letter; integer is a coiitigunouL st-ring E[i~4 ~ xcturt inlth; twý

formats., cpa(ýes may brý liked ire.Iy.

it 4A BI;i s1•ription it tc e.ucidate a ianguage, it shouid ne,

introduce names for intermediate formats which do not have meaning. I
In order to avoid additional Iorrmats whert: pousible, and to simplify

the dwr tn, ye have Introdu-ud iutu thF metalanguage the five

operator. list, Ui.st, opt, bo,,.eancombination and chol'estructure.

In each case the operand iG given within square brackets following the

operator. Only the fl'ti three of these cperators are used in this

paper. They are: j

1. list

a lst integerij

allows a to be

1 2 6 9171 3 20

2. clist (comma list)

a ::- clist [integer]

allows a to be

1, 2, 6, 9171, 3, 20

S3. opt (option) .

a ::z opt [integer] word

allows a to be either

5 NP or NP

It is clear that any occurrence uf an operator in a production

could be deieted by the introduction of in-t~rmediate formats and

lorresponding additional productions. Uis wuld not change the object
S~lang•uage.

, 5

A fMull descripti~t, of the, iyntax olI 'runs1 ninati',nsil gra~mmr is

givern in 12,1]. In this paper we shall give only a few of th,- pr&,1-tionz!,

as needed tu deauribe special ieatarfPe~ o th'ý- aystem.

Each)f the basic concepts is used throughout a grammar; they

are defined :-ecursively in terms of one another.
I

Tree

The foinat for a tree is

tree :!z node opt t complex symbol] opt < < list [tree] >

where

node ::= word or sentence symbol or boundary symbol

The optional list uf trees is the list of daughter subtrees of the

node in left-to-right order. 1'or example, the tree

S< NP < N > VP < V > > represents:

S

NPNV

N' AV

Because a braciteted representation of a tree can easily become

cumbtrnoine and unreadabl1c, a substitution capability is provided by

the production:

tree specification ::= tree opt [,clist f word tree] I

A tree is read and then searched for an occurrence•/ of the first word

in the list. Then the tree following the word is substituted for that

occ¢urrence of the word. The process is repeated until the list is

exhausted. For example, the tree specification S < S1 S2 > ,

S1 NP < N > S S2 VP < X > , X V results in the same tree shown

above.

L/In this and other similar substitutions fcr 3 word, it is intended1' that tie word have exactly one 'ccurrvnce in Lhe tree,

L ~71

Occasionally a tabular representation Af a tree is preferable,

and one is available in the system. It is used for inputs to the.

random generation routine, and as the output format.

For a detailed discussion of internal and external formats

for trees used in the system see (26].

Tree operations

The basic operations for trees are comparisons and changes.

The basic tree comparison is equality. The test for equality of trees

can be combined with a test for either equality or nondistinctness of

their corresponding complex symbols (see below). Trees may also be

tested to see if they include a specified LAQue (dominance).

Changes to trees include the elementary operations of the

MITRE grammar and the IBM Core grammar. They also include the operation

(tree) SUBST word which substitutes the tree for an occurrence of

word. This can be used to allow a change to refer to a node inserted

by a previous change in tue same se&

!/The MITRE programs (5] and Londe and Schoene [10] handle this sbme
problem in other ways.

Analysis

Anulyses occur in two places in the gramr ar, in the structural

description for a transformation and as contextual features.

The syntax for an analysis is a strung generalization of the

notiun of proper analysis originally given by Chomsky. A proper

analysis is given by a list of' nodes which are to occur in a left to

right cut across a tree. The syntax oa' an analysis here is fully

recursive; the terms of the analysis are not. simply nodes but structures

which may contain further analyses.

analysis :: list [opt [inteerI term

Note that this labelling of terms of' an analysis allows the Linguist

to number only those terms r~o which he will refer.

term structure or skip or (choice)

choice clist [analysis

Any member of the clist will satisfy the choice.

structure ::= element opt t complex symbol]

opt (opt I -n J opt I / I < analysis >]

A structure is an element which may optionally hqve a complex symbol

and may optionally have a further analysis. The analysis of the

element may be negative ("nut. analyzebie as", denoted by -n). The

optional slash indicates that the analysis is not necessarily immediate.

Its absence indicates an immediate analysis.

element ::= node or * or

[An element may be a specific node (see defi'.ition above) or simply an

unspecified single word indicated by the definite node * . The

underline LymboI occurs only in anaiyse-• which are contextual features,

9[

and indicates the location for lexizai irertion. A complex synbol

in an analysis always directly f'o7.ows an element.

skip % opt [< srcr >

The use of skips rather than var-xbitm follows the MITRE grammar.

It may be nuted that a tree i. simply a oubcase of structure

in which no integers and none of thv spccial symols (,) , - , /

, and ,__ occuir.

Lii
B

Restriction

A restriction may occur only in association with an analysis.

It may be a proper part of a transt'oimation, er may be part af a

contextual feature or it may deiine 1-r t.est tor a conditional change

in the structure chvpfe of a transformaticn.

it

.I
I

,I

Analysis •lgorithmu

The analysis algorithm will be described in detail in [24]. The

one IIg-utkc rule so far incorporated in the system occurs here. A

search is not allowed to go below a sentence symbol uniusa either the

analysis is part of a transformation which has the parameter which

specifically allows this, or the analysis itself contains a sentence

symbol for which a further analysis is given. Thi.s there are two ways

to specify the depth of a search.

Another interesting feature of the analysis algorithm is the

provision for handling the associated restriction. A three-valued

logic is used and the value of the restriction is 'undefined" until

the search has proceeded far enough to determine a value of "true"

or "false" for the whole restricticn. As the search proceeds or

backtracks the value of the restriction is continually set and unset.

2

I

!1

I

Complex symbolI

Complex symbols occur in trees, in anaia-ses and restrictios, in

the structural ch..n., of a transfoyatiAi, arnd in the lexic&l entries

and the redunliancy rules of the It-xic;ln.

We distinguish between a featu-.ir.. spec.fication and a feature:

feature sp)euification : ý valdie feature

Feature specifications occur only in ccmplex symbols.

A complex symbol is a list of feature specifications enclosed in

vertical bars and is interpreted as a conjunction. A lexical entry

contains a list of complex symbols whiL.h is interpreted as a disjunction.

Only the three values + - and I are allowed.!-/ Follo'ing

UCIA [17] a feature specification with the indefinite value * means

that the feature is "marked", without specifying whether it is

+ or - . The value * never apptars in a complex symbol in a tree,

and is never used with a contextuial featuxe.

A contextual feature is an analysis structure which contains

precisely one underLine symbol __ and whose head element is a node.

It optionally has an associated restriction. The underline indicates

the node where the lexical insertiun will occur. A user who adheres

to Chomsky's "principle of strict local subcategorization" will use 4

as the head element of each context~ua-L feature the node which immediately

dominates the one for which the lexical insezi.ion is to be made. A user

who disavows the principle may choose any dluminating nodo for the head

element. Contextual features appear only In the lexicon ana are used

[solely in the lexical insertion process.

!;,[Gross [6] allows arbLtrary wordc i, b- de.lared as values.

it5

L

Complex slymbol oreration3

Itt
The basic operations f'or complex bymb,.:As are comparisons and

The comparisons are for equalily, n,-.nO-kstinctnes•s and tWo

types ef inclusion. The result of t.ntt c.omparilon of two feature

specifications A and B is shcwn, ir; the tabile belcw, where T

represents true and F represents false and abs indicates thay the

feature is absent altogether. FLr the test to be true for complex

symbols it must be true for all th•lr ft•at;,&r jpecic.tions.

EQUALITY NIONDISI INCTNESS I Dh;IAJS IQN- INCLUSION-2

B B BA + - * abs + - * abs A - abs A + - * abs

+ T F F F + T F''? T+ T I T F T F F F

- F TF F FF T T * - F I T F - F T F F

F F T F TI T T t r I T F * F T F

abs F F F T abs T T T T abl T T T T abs T T T T

The basic changes cf compjex u',.iS ir,,iuao_ m(rging A into B

moving the features of A to B , erasinr au.l fhe features Lf A from B

and saviri in B only the featurt. •.ýiz •ti, at. i, n6 wiJ ch are in, 1 ude1 - L

in A . The results of these operat.;ni are shujwn in the tables be&lw.

It is to be expected that other op;erdt.',,nr wiV bfe added later as

required.

I
I
I

!

A B s abs

4, 4 +- + + + ab6 abs + + abs + abs
+.- - - a b z n a b r . - b ý - -

+ ab a bz, a bs
attus

abs + - b& Los + ~* bu abs abg abt aib abs

A redundancy rule A => t appi I I ts,. a compiex symbol B only

if A is included-i In B . If so, then C- La merged into B

I
ii

~1

I

IlJ Mme -,mmw I; a ý,ranA-rmaf,-;:iil Lrd mbr are

3 Fracce stru;ctureu

3 Th.ni phrmse r~ir.;f ti~r Ly: .p' -Ir LL: ý.n Aaic~~l~r+~

free F~ramrnar. Complex uytribcI di, w~ apr.'~ar i.n +.le phrazvý otriwture:

they are intrud.ic~ed (rIirng lex-,.'tl isji- b r e'oij). Rti.es iore

accepted in a I inearizatiun * n,., ý;unjtro 1ing.,iij.Ati.rrn'I- and are

4 ~~~i-Lmrediately expoiaii'. r-A;4.

IA IXI

VP C AP P.Y n

lb rx-preser1 te-i as

*1~ VI V-. (A~rX(l.¶V(t)xrTFz

Mie txrvi~-!;iun v! ruic i:;(- ~ '. Ki u.-nt :;tFA ji: 110 n

bewLn:r ,(a.9

'1
B a i a! expraid.L; fr !: a -. iipe 1', rt.

Lv d- [I) --r

kv

'Lexicon

A lexicon contains a preliminary part, or prelexicon, which

contains feature definitions and redundancy rules. The feature

definitions include a list of categorys in the order of lexical insertion.

One may also give names to contextual features to avoid having to write

them in full in the lexical entries. A redundancy rule is of the form:

redundancy rule ::= complex symbol = > complex symbol

The interpretation is that if a •omplex symbol includes all the

feature specifications of the complex symbol to the left of the

arrow (= >) of a redundancy rule then it implicitly ccntains those

of the complex symbol to the right of the arrow. Explicit expansion

of complex symbols by the redundancy rules can be carried out in the

system.

In a lexical entry the set -.f possible complex symbols for a

vocabulary word are given. If several vocabulary words have the identical

set of complex symbols, the vocabulary words appear in a single lexical

entry. Each complex symbol correspo;nds to a sense of the word. The set

of complex symbols is regarded as a disjun-tion. Since the complex symbol

itseilf is a conjuncAion of feature specifications this is in effect a

normal form. Thub the system has the same power as one which allows

arbitrary boolean combinations of features, (see Lakoff (71), without

their complexity. For example, to say that, a verb must have both an

animate subject and an inanimate object, one may use either one or two

feat;ure specifications in the same complex symbol. To say that it must

have ei4,hcr an animatc subic--t or inanimat.e object, two complex symbols

are nedfed.

17

Trans fur~matA Iona

The final cemponen±. of ai grammer)~~l t~ 'a dII.t of trangformat ions

and a control, puggriu-n. 1he u3l~uubLt;un ýO- fhýz ton~ro]. prcgram will be

deere ,%o fhe uec~ivn .,n t~he a.lgkiithrrm for cun'!.roI of' trsnsforn'at:Lon

A trasf~ormation cunsiýAs of a trniura~ n 1cptif1C'atijn,

a otriuctural dencrintiton, and (opticraily I rc.:trictignn and zt~i-nitura1

change. The transformation identl±'lcai ion may inc 1.ýjre, in addit~ion to

the transformation name, a groiip numtour and vario'is parameters. A

transformation may be rc, nc' 7-a!L~' s.2 rmuri .& or by

the group nu~mber. The parameters in-ival.f 'Aivfther ,r iit tle trarnsforma-

ticn is optional, whether (and how) it .z;~ tx be rep-ai--ed aft-er a

successful application, and whetlitr or not. the analysi.z algorithm may

ui~arch below an unmentioned sentonce symbui. Key~crds are also given

here.

The Atructural change is expruuocd, aL; in the '/.II'RE grammar 181

by a list ofc,' ±rqtiqns. A ncw featiure of the system is the

icnit onal inlcag >M1

condit~ion<. change J'-.eriin > 1141

< qtruvL'.4ral.0r.angc > .$

The basic ope~rations for t~rov< and compý..x symbc-i have ullrtady beten

rt

COMPONENT AWIfURITHMS I

The three main algurithms of' a tren!tormational grammar correspund

to the three components and are phrase struct-,rt generation, lexical

insertion and controJ of transforma+.icns. Our ituipementation of the

first, p-oces3 is designed to be "usefal in the teseing of r. grammar.

f
The second has not previously been fully lescribed and we give for the

first time an explicit algorithm. Various proposalc have been made

for the third algorithm; rather than choosing one of them we include the

specification of the algorithm as part of the grammar.

Phrase structure generation

The system can be started with a base tree input by the user.

However, iý also has the capability of "directed raidom" generation of

trees from the phrase structure grammar. This scheme, w'hich is described

in detail in [20], allows the user to specify a "skeleton" around which

a tree is generated at random. The skeleton may also bear constraints

I of dominance, nondominance and equality. The scheme was aesigned to

g make it possible for the user to generate trees which are "Interesting"

rather than simply random; in particular, which will test a specific

I transformation. It should ý- notod that there is a restriction on the

phrase structure grammars which can be handled by the algorit~hm:

the rules must be ordered so that no symbol as introduced bejow the

rule which -xpands it, with the excepticn •f course of the sentence A

symbol.

1 19

Lexical insertion

The aigorithm for lexical insertion is an interpretation of one

of the two alternatives presented by Chomsky in Aspects. Complex

symbols are introduced from the lexicon only after the phrase

structure generstion of the base trec is completed. In order to

forn-lize the process, we have had to make decisions on many points

not treated explicitly by Chomsky. The details are presented in (22];

we note here some of the salient features.

A contextual feature is simply a special case of analysis; thus

much of the work tn lexical insertion is done by the same analysis

algorithm used for transformations.

Lexical insertion begins with the lowest embedded sentence, and

wcrks upward.-/ Within a sentence the order of lexical insertion is

determined by the list of categorys in the prelexicon. This order may

have considerable effect on th2 efficiency of the process. However,

from a formal point of view, alJ. categories are alike.

Thc basic criterion for lexi:al insertion is non-distinctness:

the tree may already contain e compl:x symbol; a word and its

symbol can be inserted only if the complex symbol is non-distinct from

I the one already in the tree. But this is only a necessary condition;

each featuxe specification for a contextlual feature must be checked by

the analysis algorithrm. It' the value is + the analysis algcrit.hm

must succeed, and if -- it must fail.

Although complex sMbbols are not introduced in the phrase structure,
it is possible that a skeleton in'ut to the ph.'ase structure generation
routine already ccontainr some words of the lexicon. In this case,
the complex syrnb',)s for those words are l ooaed up ir the lexicon and
inserted prior to the process described herc.

I&

!

I
Once a vocabulary word and complex symbol have been selected (at

random from those meeting the above tests), one additional step is

necessary before lexical insertion takes place. The possible side

effects of the contexttal features must be taken care of. If, for

I example, a verb has been selected which takes animate subject and

inanimate object, feature specifications may need to be added to the

I complex symbols for the subject and object. Then contextual features

are dropped from the complex symbol, since they have served their

function, a + or - vwlue replaces the indefinite value * , and

the vocabulary word and complex symbol go into the tree.

2I
I
I

[
[

21

[I

Control of transformations

Each transformational grammar that has discussed at all the matter

of order and point of application of transformations has presented a

slightly different algorithm. From the available examples, it was

possible to abstract the basic ideas involved and to write a simple

programming language in which the linguist can express the algorithm

for a particular grammar.1- The control program refers to transformations

either individually by transformation name or by groug number. The

language contains a repeat-instruction which allows a list of control

Insuructio__s to be repeated either for a fixed number of times or until

they all 2ail. One innovation is the IN-instruction. The statement

IN transformation name (integer) DO

causes the integer-th term of the transformation to be used as the

starting point for the search algorithm. Such notions as "highest

sentence", "lowest sentence", etc. can be expressed by the IN construct.

The notion of keyword has also been imp]emented.-/

The control language allows branching on the success or failure

of a transformation. The use of this conaitional instruction makes it

possible to write transformations with less attention to certain types

of interaction. For example, suppose transformation T2 is to apply

only if T1 has failed to apply. Then the instructions

I
S-/JIn addition to controlling the grammar, the control language also

provides TRACE instructions which govern the amount of output.

.-/Keywords were first used in the MITRE programs [5]. They wereI implemented in a slightly different form by [BM [9].

1 22

I

IF Ti THE! GO TO A EISE GO TO BJ

Iý T2,

will cause T2 to be bypassed if TI fails. This instruction may

be considered excessively powerful. It is available because the

alternatives frequently spem to be either to alter artificially the

I structural description of T2 or to include a restriction on T2

such as: "applies only if Tl has failed to apply".i/

For a detailed discussion of the control language and examples

of control programs see [23].

We have not attempted to deal with the notion of implicit ordering

of transformations.

l/The use of the conditional instruction will of course speed up the

processing of ' a tree.
2

I I3

T1TF PROGRAM•

The system is written as a collection of subroutines which can

be called in various orders. A table of the subrouti- structure is

included in the Programmer's and User's Guide to the System 1241.

A MAIN programr consists of a sequence of subroutine calls.

Typically a run begins with a call to the inatialization subroutine,

followed by calls to input routines for the components of the grammar.

Then either a base tree is input, or a skeleton is input and the

generation routine called. Lexical insercion is optional at this

point, Tnen the t:ansformation routin a.s callao, and the program

executes the user's control program. The process can be repeated with

a new tree from the skeleton or with a new tree input.

Alternative MAIN programs to test individual components of the

grammar can easily be constructed. For exampte, to test the phrase

structure one might simply generate trelEs at random. Or, to test

lexical insertion one could start with base trees containing incomplete

complex symbols and investigate how they were completed. Transforma-

tions can be tested beginning from base tretes with (or without)

lexical items already included.

MAIN programs for a variety of purposes are. also given in [2t.].

The system is implemented in FORTRAN TV (H) on the TBM 360/67.

To the user, however, the system does not £,1¶ like FORTRAN. All of

the fCrmats are free-fieid and., externat•.y, w-.ds may be up to 40

characters long. See [19) for a descripion cf the free-field

input/output subroutine package.

24

D[nECrIONS FOR FUrJ7BE WORK

There are many wayzs in which tfhe WorK whir habs been done can be

Cxtended. ou% .;,f these corrcsponri lc nt.er(Oing open questions in

the transformational theory of synrax. Wý mention here some areas in

which we plan to begin work soon. We think that the generality of the I
system wiil. give us a strong starting poLnt in these invesligations.

Conjunction

No means of hanaling 1,:'ansformationai ,;chemas such as conjunction

has been provided. In .he earlier programs at, MITRE a conjunction

algorithm due to Schane [161 was inciudec ana we pier, to carry this

over into the present. system as its first version of conjunction. We

hope then to investigate the alternatives considered in the literature.

I Idiom___s

A conmmon proposal for the treatment of idioms is that an idiom

occurs as a tree in the lexicon. We foresee only minor difficulties

in incorpo.fating cidoms in this way, and pian to do so when time allows.

Linguistic rules j

The current tr-Fnd in transformational linguistics includes a

search for linguistic r'es which woild appy it, all. grammars.

Ro:ss [11., '51, in payt.icular, has been working al.ong trhese Lines. We

S hop(e Later to invwst•igate t.his w-rK by aev.lisig means of irworporating

[

[1* mmm

proposed rules into the system."/

Lexi(cal. derivation

The recent. work by Chapin (2, and Chor.,.sky [] on .texxcaJ

derivation has opened up some i•.teretirg lanes of Investigation

which we are now beginning to explore wiljiin the system. A preliminary

study of Chapin-s early work web mauE prior to the development of the

system and is reported in 1301.

Dependency gramma.rs

Jane Robtnson [12i has recently offered a proposal for transfor-

j mational grammars in whion the unoerlying structure is a oeperdency

grammar. The present system albows complex symbols to be associated

I with any node of a tree, but ve do not. now associate lexical words

with higher nodes as woold be requireci by the "pzojectivizy" of

dependency grammars.I
I
I

I --Rosss rule of tree-pruning has been incorporated by Gross [6].

126

-t

OTHEH TRANS1POMATIONAL GRAMMAR SYSTEMS

The earliest •omputer systems for tr~asformational grammar were

* those of Petrick and MIM= [U*I. The oyut.rm nrare ia on vuigrowth
mA

and extension of this early work at MITRE. Naturally it embodies

a more recent version of transformational theory. J
I The partial system of Lieberman and Blair [8, IA represents an

early attempt to deal with the model of Aspects. A lexicon was defined,

jand phrase structure programs and some transformational programs w'tre

written.

Systems developed concurrently with this one include the console-

controlled grammar testers of Gross [61 and of Londe and Schoene [lO].-/

The problems best treated by a system designed for immediate response

to a user at a console differ from those appropriate to an off-line

i system such as ours. While there is some overlap in these systems,

we believe ours is the first to ccnsider all phases of transformational

i grammar in a unified system. For example, the three component algorithms

have no correspondents in other systems and neither has included a I
lexicon. Various differences in common areas have been noted above.

ji[

I/we wish to thank both Dave Londe and Lou Gross fox' many pleasant
and fruitful discussions, and for a free exchange of ideas from
which our work has benefitted.

27

Ii

ACKNOWLEDGMENT

The syotem dencribed in this paper waa developed with Robert W.

Doran (metalanguage, basic syntaxp free-field input/output, analysis[lg~orithm), Thomas H. Bredt (lexicon and lexical inaertion),

Theodore S. Martner (analysis algorithm), and B&ry Pollack (restrictions,

control language). We have worked closely and well together; while

the primary areas of responsibility are as shown above, there is no

part of the system that has not been helped by ideas from others in the

group.

I28

I
I

1 2

41] Y. Blair, Programming of the grammar tester, in [9].

[2) Paul Chapin, On the Syntax of Word Derivation in English,

MIT Thesis, 1967. j
[5) Noam Clicmrky, AqpectG of th. T1ieor• vf Syitax, M.I.T. Press,

Cambridge, Massachusetts, 1965.

[4] Noam Chomsky, Nominalization, to appear in Peter S. Rosenbaum

and Roderick Jacobs, eds., Readings in English Transformational

Grammar, Blaisdell Publishing Co.

(5) J. Friedman, SYNN, an experimental analysis program for

transformational grammars, WP-229, The MITRE Corporation, 1965.

(6) L. N. Gross, On-line programming system user's manual,

MTP-59, The MITRE Corporation, 1967.

(7) George Lakoff, On the nature of syntactic irregularity, NSF-16

The Computation Laboratory, Harvard University, 1965.

(8) D. Lieberman, Design of a grammar tester, in [9].

[9] D. Lieberman, ed., Specification and Utilization of a

Transformational Grammar, AFCRL-66-270, 1966.

[10) D. L. Londe and W. J. Schoent, I'T: Transformational Grammar

Tester, Systems Development Corporation, 1967.

(1.1] Stanley R. Petrick, A recognition procedure for transformational

g grammars, M.I.T. Thesis, 1965.

29

Li
[121 Jane J. Robinson, A dependency-b4bvd transformational grammar,

INM Research Report RC-Y...., TorKtown Heightc, N:. Y., 1967.

3[)I P. Eosenbaum and D. Lochak, Thu r1V Core Grammar of English,

1n (9].

[1h4 John R. Ross, A proposed ru-e of' trce-pruning, paper presented

to the Linguistic Society of America, 1965.

([151 John R. Ross, Constraints on variables in syntax, M.I.T. Thesis,

1967.

[161 Sanford A. Schanu, A schema for sentence coordination, MTP-1O,

The MITRE Corporation, 1966.

'17] R. Stockwell, P. Schacter, B. Partee, et. al., Working Papers

of the English Syntax Project, UCIA, 1967.

[18] A. M. Zwicky, J. Friedman, B. Hall, and D. F. Walker, The MITRE Analysis

Prccedure for Transformational Grammar, Fall Joint Computer

Conference 1965, ?7, 517-326. See also MTF-9, The MITRE

Corporation, 1965.I

I
!

I
!
I

3O)

a

The following references are working papers and reports of the

Computational Linguistics Project, Computer •e- Lepartment,

Stanford University.

[19] Bobert W. Doran, '50 O.S. FORTRAN IV Free -id Input/output

Subroutine Package, CS-e9, AF-14, October 1967.

[201 Joyce Friedman, Directed Random Generation of Sentences) CS-80,

AF-15, October 1967 (submitted for publication).

[21] Joyce Friedman and Robert W. Doran, A Formal Sy ax for

Transformational Grammar, AF- , forthcoming.

[22] Joyce Friedman and Thomas H. Bredt, Tcxical Insertion in

Transformational Grammar, AF- , forthcoming.

[23] Joyce Friedman and Bary Pollack, A Control Language for

Transformational Grammar, AF- , forthcoming.

1[24] Joyce Friedman, ed., Users' and ?rogrammers' Guide to a Transfor-

mational Grammar System. This document is not yet complete but

the following sections are available as working papers:

j [25] J. Friedman, Subroutine Structure, AF-17, November 1967.

[26] J. Friedman, Tree-, AF-1, September 1966.

[27] J. Friedman, Input routine for transformations, AF-16,

(October 1967.

[28] J. Friedman, Input routine for structural change, AF-18,

November 1967.

[[29] Rary Pollack, Routines for restrictions, AF-19, December 1967.

5301 Joyce Friedman, Prcgramming lexical grapho-morphemic analysis,

AF-5, November 1966.
5.1

